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IMPORTANCE OF MATMUL

e Fundamental operation in
o Deep Neural Networks
o Transformers/Natural Language Processing Models

Runtime breakdown on V100 GPU
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Matrix multiplications (GEMMs) consume around 70% of the total runtime when

training modern deep learning workloads.

https://ieeexplore.ieee.org/document/9065523



IMPORTANCE OF MATMUL

e Matrix multiplication is compute-intensive
o For a matrix multiplication of size MxK * KxN
o Compute costis O(M K N) FLOPS
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MOTIVATION FOR TENSOR CORES

e Memory BW is our biggest bottleneck; grows much slower than compute BW

o Solution?

Introduce MatMul specific functional unit within GPGPU pipeline
Reduced Register Pressure (don't need to store intermediates)

Optimizes loaded memory utilization

Enables fusing operations — reduce critical path & rounding error

Performance
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MOTIVATION FOR TENSOR CORES

e SMALU/FPU only,

MUL RO, AO, BO
MUL R1, A1, B1
MUL R2, A2, B2
MUL R3, A3, B3
ADD R4, RO, R1
ADD RS, R2, R3
ADD RG6, R4, R5

e TCU extended SM
o FEDP_MMARS, A0, B0, A1, B1, A2, B2, A3, B3
e Reduced Register Pressure: (R0, R1, R2, R3, R4, R5)
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PLACEMENT OF TENSOR CORES IN A GPGPU SUB-CORE (SM)
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https://modal.com/gpu-glossary/device-hardware/tensor-core



Systolic Array based MatMul

+ Low Memory BW, efficient for Large Matrices (256x256) — Training (TPU)
- Rigid uArch — Poor resource utilization/occupancy when operating on small,

irregular or sparse matrices; needs (2N - 1) cycles
- Isolated Accelerator-like approach fits into Dataflow Processors
Multiply two 3x3 matrices (inputs)
o Keep the final result in PE accumulators
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Fused-Efficient Dot Product (FEDP) Array based MatMul

e Fused Efficient Dot Product (FEDP) Arrays:

+

Efficient for Small as well as Large Matrices — Inference/Training

+ GPU memory BW is bound to warp size 16/32T anyway
+ Large tiles are simply time/space multiplexed
+ Fixed 4-cycle Latency (Independent of Tile Size)
+ Flexible support for mixed-precision, irregular and sparse workloads
+ Tightly-Coupled Functional Unit-like approach fits in to GPGPU Arch
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Per-warp scheduling: mmadd rd, rs1, rs2, rs3

» Register operands spawn the whole warp
* Max register capacity = 32 x 32 bit = 1024 bit
* You can now store a destination tile of 8x4 floats

» Possible tile configurations
« 32 — f32: M=8, N=4, K=4
« 16 — f32: M=

e f16 — f16: M=
e int8 — 132: M=
 int4 — 132: M=




REGISTER OPERAND PACKING SCHEME

FP32

FP16/BF16 FP16/BF16

FP8/BF8/INT8 FP8/BF8/INT8 FP8/BF8/INT8 FP8/BF8/INT8

UINT4 | UINT4 UINT4 UINT4 UINT4 UINT4| UINT4 UINT4




FEDP MICROARCHITECTURE CHALLENGES

e Low latency (NVIDIA Volta FEDP had a 4 stage pipeline)

e Mixed-Precision FP support for efficient DL workload specific operations

e Fuse Integer Pipeline within Floating-Point Datapath maximizing resource
reuse with minimal overhead

e Primary Goal? Meet 300MHz operational freq timing req

e Open-Source Baseline: BSG modified SystemVerilog Berkeley HardFloat
(RocketChip, Gemmini, Virgo, BSG Manycore)
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FEDP MICROARCHITECTURE: LIBRARY MODULES

e Floating-point FEDP datapath requires several multi-operand additions:
o Carry Save Adder (CSA) - (O(log2(N) + O(W))

e Fastfinal 2-operand adder:
o Kogge-Stone Adder (KSA) - Parallel prefix tree structure

e Fast NxN-bit multiplier:
o Wallace Tree Multiplier (WTMUL) - Fast partial product reduction

e Additional details in Backup Slides
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FEDP Microarchitecture: Shared Low-Precision Multiplication

e Dedicated Wallace Tree multipliers approach requires:
o One 11x11 (fp16), One 8x8 (bf16) Two 8x8(int8), Six 4x4 (fp8, uint4) and Two 3x3 (bf8)
o — Thirteen variable-width multipliers

e Instead we share “class-wise” multipliers to save area based on format,

o One 11x11 (fp16/bf16) — (extensible: tf32) MULTIPLY
o Two 8x8 (fp8/bf8/int8) — (extensible: uint8) _V_ e V
o Four4x4 (uint4) — (extensible: int4, fp4)

EXP ADD
—>» MAXEXP —>

o — Only seven variable-width multipliers o

e Overhead incurred by radix-4 booth recoding
isn’t worth it at our target bit-widths (4-11) S
g | —
although no. of partial products are halved SI6 MUL

3y INT SHARED >

SIG MUL




FEDP Microarchitecture: Shared Low-Precision Multiplication

e Formats that pack > 2 operands per register need additional additions to
maintain the same width and format compatibility later in the pipeline

¢ Range Precision
‘» exponent mantissa
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e All multiplications converge in an EBM25 intermediate representation for
following stages in pipeline



FEDP Microarchitecture: Exponent Add & Bias

e Each FP format has a Exponent bias based on Exponent Bit-Width
e Foregq,

o FP32 Exp — 8-bits — Bias = (2*(8-1) -1) = 127

o FP16 Exp — 5-bits — Bias = (2*(5-1) -1) = 15
e FP Multiplication result calculation requires input exponents addition

e Mixed-Precision operation requires bias adjustment

X XY = (X, xY,) x23etYE

EXPrp3s = EXPg + EXPg + BIASEp39 — (2 X BIASEpP16) + 1



FEDP Microarchitecture: Maximum Exponent Identification

e Compute all NxN pairwise exponent sign and difference matrices
O(1) depth vs O(log2(N)) tree-comparator structure.
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L A { Control Logic (Table I) ‘
V2>v1>v3>v4 l l ' 1 1
exp_max shift_ab shift_cd shift_ef shift_gh

e Don’t need to re-calculate shift amounts, simply invert subtractor results in
consideration

https://ieeexplore.ieee.org/document/7416176



FEDP Microarchitecture: Significand Alignment

e EB8M25 raw significands require shifting before accumulation

X+Y =(Xgx2¥EYE L Yg) x 2F

e Shift amounts were already calculated in the = - -------"==-----—-

previous stage’s maximum exponent logic

FP/INT
SELECT

>




FEDP Microarchitecture: High-Precision Accumulation

e N-operand (25+log2(N))-bit CSA accumulates aligned significand products
e Dealing with signed-values requires an additional log2(N) bit sign-extension before

feeding into CSA
e Addend “C” accumulation is integrated into this large accumulation — smaller

rounding error/critical path
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The CSA utilizes a recursive 4:2
compressor structure with 3:2 fallback to
deal with odd number of operands cases

https://ieeexplore.ieee.org/document/10182007



FEDP Microarchitecture: Rounding & Normalization

e Standard Leading Zero Counter (LZC) normalization and

Round-to-nearest-even (RNE) rounding are performed.

1.BBGRXXX

Guard bit: LSB of result
Sticky bit: OR of remaining bits

Round bit: 1%t bit removed

* Round up conditions
* Round =1, Sticky=1=>0.5

* Guard = 1, Round = 1, Sticky = 0 = Round to even round_up = guard_bit & (round_bit | sticky_bit | Isb)
GRS
128 1.000 000 N 1.000
i 1.101 100 N 1.101
17 1.000 010 N 1.000
19 1.001 110 Y 1.010
138 1.000 011 Y 1.001
63 1.111 111 Y 10.000



FEDP Microarchitecture: Fusing the Integer Pipeline

Many components required for Integer dot product operations are already found in the
existing FP datapath — Fusing both pipelines eliminates arbiter overhead and
separate scheduling units

Products zero/sign-extended to 25-bits to match accumulator requirements and

enable reuse of intermediate registers NORM&ROUND
32-bit addend C is partitioned into M M
lower 25 bits (processed in FP ( B
accumulation) and upper 7 bits

(propagated separately) >

Final 32-bit integer output is S | T

| sELECT

> LZC —» RNE |

assembled by concatenating 25-bit
accumulation with upper 7 bits

computed (CSA) in parallel to FP o INT G| e
normalization/rounding stage =Eh




FEDP Microarchitecture: Putting everything together
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FEDP MICROARCHITECTURE: EVALUATION ENVIRONMENT

e RTL implementations of these modules can be found at

https://qithub.com/vortexapagpu/vortex/tree/bug fixes/hw/rtl/tcu/drl

e Library modules can be found at

https://qithub.com/vortexapapu/vortex/tree/bug fixes/hw/rtl/libs

e Bash commands for running tests can be found at

https://qithub.com/vortexapagpu/vortex/tree/bug fixes/ci/reqression.sh.in

The following evaluations of our FEDP design are made against equivalent
Berkeley HardFloat and Xilinx DSP IP based discrete implementations,
targeting 300MHz clock frequency on the AMD Xilinx Alveo U55C FPGA across
a range of Threads/Warp Configurations (4, 8, 16, 32)


https://github.com/vortexgpgpu/vortex/tree/bug_fixes/hw/rtl/tcu/drl
https://github.com/vortexgpgpu/vortex/tree/bug_fixes/hw/rtl/libs

FEDP Microarchitecture: Performance Scaling
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~ 3.7x Berkeley HardFloat



FEDP Microarchitecture: Area Costs

Backend N=4 N=8 N=16 N=32
Xilinx DSP 6216 12414 49236 98581
LUTs HardFloat 18400 37002 144001 291207
Proposed 10945 21899 95336 188077
Xilinx DSP 9107 18063 70738 141314
FFs HardFloat 6163 12153 46850 93190
Proposed 2364 4624 14967 29769
Xilinx DSP 64 128 512 1024
DSPs HardFloat 16 32 128 256
Proposed 0 0 0 0

Proposed <60% Berkeley HardFloat



SGEMM TCU DEMO



I nikhil@grindpadvm: ~/vortex

nikhil@grindpadvm: $ source ./ci/toolchain_env.sh
bash: ./ci/toolchain_env.sh: No such file or directory
nikhil@grindpadvm: $ ./configure --xlen=32 --tooldir=$HOME/tools
nikhil@grindpadvm: $ source ./ci/toolchain_env.sh
nikhil@grindpadvm: S make -s
= iVie peis B a tilco n Repor t: Verilator 5.028 2024-08-21 rev v5.028
Verilator: Built from 1.861 MB sources in 128 modules, into 18.440 MB in 82
+ files needing 0.051 MB
Verilator: Walltime 15.311 s (elab=4.972, cvt=5.525, bld=3.506); cpu 11.829
on 6 threads; alloced 388.922 MB
-Verilation Repor t: Verilator 5.028 2024-08-21 rev v5.028
Verilator: Built from 2.0655 MB sources in 131 modules, into 20.360 MB in 88
+ files needing 0.0651 MB
Verilator: Walltime 14.547 s (elab=4.807, cvt=5.180, bld=3.322); cpu 11.510
on 6 threads; alloced 398.098 MB
-Verilation Repor t: Verilator 5.028 2024-08-21 rev v5.028
Verilator: Built from 1.950 MB sources in 132 modules, into 20.379 MB in 82 C+
+ files needing 0.051 MB
Verilator: Walltime 14.271 s (elab=4.283, cvt=4.919, bld=3.916); cpu 10.619 s
on 6 threads; alloced 390.777 MB
nikhil@grindpadvm: $ make -C tests/regression/sgemm_tcu clean && CONFIGS=
"-DNUM_THREADS=4 -DITYPE=fp16 -DOTYPE=fp32" make -C tests/regression/sgemm_tcu
make: Entering directory '/home/nikhil/vortex/tests/regression/sgemm_tcu'
rm -rf *.elf *.vxbin *.dump




M~ nikhil@grindpadvm: ~/vortex

/home /nikhil/tools/1lvm-vortex/bin/1llvm-objdump -D kernel.elf > kernel.dump
make: Leaving directory '/home/nikhil/vortex/tests/regression/sgemm_tcu'
nikhil@grindpadvm: $ CONFIGS="-DNUM_THREADS=4 -DEXT_TCU_ENABLE -DTCU_DRL"
./ci/blackbox.sh --driver=rtlsim --app=sgemm_tcu
CONFIGS=-DNUM_THREADS=4 -DEXT_TCU_ENABLE -DTCU_DRL
Running: CONFIGS="-DNUM_THREADS=4 -DEXT_TCU_ENABLE -DTCU_DRL" make -C ./ci/../ru
ntime/rtlsim > /dev/null
Running: make -C "./ci/../tests/regression/sgemm_tcu" run-rtlsim
make: Entering directory '/home/nikhil/vortex/tests/regression/sgemm_tcu'
LD_LIBRARY_PATH=/home/nikhil/vortex/runtime: VORTEX_DRIVER=rtlsim ./sgemm_tcu
open device connection
CONFIGS: num_threads=4, num_warps=4, num_cores=1, num_clusters=1, socket_size=1,
local_mem_base=0xffffoeeo, num_barriers=2
input data type: fp16 (id=1)
output data type: fp32 (id=0
Dimension: M=2, N=
Dimension: M=8, N=

: 32x8

: 8x32

: 32x32
allocate device memory
A_addr=0x10000
B_addr=0x10200
C_addr=0x116000
upload matrix A buffer
upload matrix B buffer
upload program
upload kernel argument
start device
wait for completion
Elapsed time: 12444 ms
download destination buffer
verify result
cleanup
PERF: instrs=25851, cycles=27696, IPC=0.933384
PASSED!
make: Leaving directory '/home/nikhil/vortex/tests/regression/sgemm_tcu'
nikhil@grindpadvm:




FUTURE WORK IN PROGRESS/CONSIDERATION

e Split 4:2 CSA structure into parallel MOD-4 groups for reducing large Ns
o Eg. 8 thread config — needs 9 operands to be summed
e No difference in latency of dense vs sparse FEDP, but power consumption can be
optimized by enable gating modules/clock gating intermediate registers
e Add E8MO registers for per-operand scaling, and some additional scaling multipliers
for OCP Microscaling MXFP8 formats dot product support

k k
The dot product of two MX-compliant format vectors A: {X(A), [Pl.(A)], } and B: {X(B), [Pi(B)]_ } of
=1 =1

length k is a scalar number C. The following semantics must be minimally supported:
K

C = Dot(4,B) = x(A)X(B)Z (Pi(A) o PI(B))
i=1
Where:
o X@, X® are the block scales of vectors 4 and B respectively.



BACKUP/ADDITIONAL SLIDES



Outer Product Matmul

3 cycles for 3x3 matrix




Inner vs OQuter Product

e An outer product based uarch would enable lesser MIO BW (only requires
reading each row/colum once)

e However it requires storing full tile size intermediate results before
accumulation — very expensive

e Adjacent Rows/Columns can be accessed relatively easily from shared
memory — inner product based uarch should have the same throughput



OCP Microscaling MX Format Support

e Only select Nvidia Blackwell and AMD CDNA4 archs support MX formats atm
e Since, we already have FP8 support, we only need to add EBMO registers for
per-operand scaling, and some additional scaling multipliers

k k
The dot product of two MX-compliant format vectors A: {X(A), [Pi(A)]. } and B: {X(B), [Pl.(B)]_ } of
=1 =1

length k is a scalar number C. The following semantics must be minimally supported:
k

C = Dot(4,B) = XWx® % (p® x p®)
=1

Where:
e X@W, X®) are the block scales of vectors A and B respectively.



FEDP MICROARCHITECTURE LIBRARY MODULES

e Floating-point FEDP datapath requires several multi-operand additions:
o Summing multiple partial products from multiplier AND array
o Summing multiple exponents for result exponent add and bias
o Summing multiple sub-product
e Assuming we have N operands of W bits each:
o Traditional Reduction Tree Adders have (O(log2(N)) x O(W))
complexity

o Carry Save Adders have approximately (O(log2(N) + O(W))
complexity
e Operands in a CSA reduce vertically in parallel without prior carry

dependencies and only require one complete W-bit addition at the end



FEDP Microarchitecture Library Modules: Carry Save Adder (CSA)
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FEDP Microarchitecture Library Modules: Kogge-Stone Adder (KSA)
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FEDP Microarchitecture Library Modules: Wallace-Tree Multiplier

e \Wallace-Tree Multipliers reduce the multiple partial products from the
multipliers AND array effectively using a CSA
d3 d; d; dg
x b, b, b, b,
P70 Peo Pso Pao P30 P20 P10 Poo
Pe1 Psi Pa1 P31 P21 P11 Po1 X
Ps2 Paz P32 P22 P12 Pz X X

Paz P33 P23 P13 Ppz3 X X X
Z: Zu Zo Za B 2 %y g

e Radix-4 booth recoding overhead outweighs the benefit of halving the

number of partial products at our target 4-11 bit widths.



Shared Multiplier from Efficient FIMA

e Unified mini-multiplier partial product grid for mantissa multiplication. Activate
partial products as required based on format
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(b) Single-precision mode


https://ieeexplore.ieee.org/document/8626475

KEY TAKEAWAYS FROM

e Example executing fp32 24-bit mantissa multiplication using 15x15 bit multipliers
o The four 15x15 multiplications produce:
m pp0=A sub0 x B subO (positions 0-29)
m ppl=A _sub0 x B sub1 (positions 15-44)
m pp2=A_sublx B sub0 (positions 15-44)
m pp3 =A_sublx B sub1 (positions 30-59)
o Accumulate PPs using 4:2 CSA
e Advantages to this approach:
o One large multiplier for all formats
o Efficient resource utilization
o Regularity in design — better synthesis
o Parallel LZ(A)C subnormal to normal number during format transition


https://ieeexplore.ieee.org/document/8626475

KEY TAKEAWAYS FROM

e Drawbacks to this approach:
o Alot of subword boundary management

m Sign Extension: Extending sum vectors with 1's to the MSB position of
the larger product (like in VX_tcu_drl_acc currently)

m Carry Suppression: Discarding any carry propagation through bit
positions at mid-point zero-padded junctions (Eg. [59:48] position wrt
48-bit fp32 significand mul)

o Still requires zero-padding for smaller formats

m Alternatively, if a smaller bit size multiplier is chosen to avoid
zero-padding, a larger dimension partial product grid is required and
larger supported formats will require a lot of csa accumulation stages


https://ieeexplore.ieee.org/document/8626475

