
Nikhil Rout, Blaise Tine @ Vortex Workshop, MICRO 2025
 October 18, 2025

A Configurable Mixed-Precision Fused Dot
Product Unit for GPGPU Tensor Computation

IMPORTANCE OF MATMUL

● Fundamental operation in
○ Deep Neural Networks
○ Transformers/Natural Language Processing Models

https://ieeexplore.ieee.org/document/9065523

IMPORTANCE OF MATMUL

● Matrix multiplication is compute-intensive
○ For a matrix multiplication of size MxK * KxN
○ Compute cost is O(M K N) FLOPS

MOTIVATION FOR TENSOR CORES
● Memory BW is our biggest bottleneck; grows much slower than compute BW

○ Solution?
■ Introduce MatMul specific functional unit within GPGPU pipeline
■ Reduced Register Pressure (don't need to store intermediates)
■ Optimizes loaded memory utilization
■ Enables fusing operations → reduce critical path & rounding error

MOTIVATION FOR TENSOR CORES

● SM ALU/FPU only,
○ MUL R0, A0, B0
○ MUL R1, A1, B1
○ MUL R2, A2, B2
○ MUL R3, A3, B3
○ ADD R4, R0, R1
○ ADD R5, R2, R3
○ ADD R6, R4, R5

● TCU extended SM
○ FEDP_MMA R6, A0, B0, A1, B1, A2, B2, A3, B3

● Reduced Register Pressure: (R0, R1, R2, R3, R4, R5)

PLACEMENT OF TENSOR CORES IN A GPGPU SUB-CORE (SM)

https://modal.com/gpu-glossary/device-hardware/tensor-core

Systolic Array based MatMul

Credits: Prof. Onur Mutlu

+ Low Memory BW, efficient for Large Matrices (256x256) → Training (TPU)
- Rigid uArch → Poor resource utilization/occupancy when operating on small,

irregular or sparse matrices; needs (2N - 1) cycles
- Isolated Accelerator-like approach fits into Dataflow Processors

Fused-Efficient Dot Product (FEDP) Array based MatMul

● Fused Efficient Dot Product (FEDP) Arrays:
+ Efficient for Small as well as Large Matrices → Inference/Training
+ GPU memory BW is bound to warp size 16/32T anyway
+ Large tiles are simply time/space multiplexed
+ Fixed 4-cycle Latency (Independent of Tile Size)
+ Flexible support for mixed-precision, irregular and sparse workloads
+ Tightly-Coupled Functional Unit-like approach fits in to GPGPU Arch

WMMA TILE/CORE SIZE CALCULATION

Credits: Prof. Blaise Tine

REGISTER OPERAND PACKING SCHEME

FEDP MICROARCHITECTURE CHALLENGES

● Low latency (NVIDIA Volta FEDP had a 4 stage pipeline)
● Mixed-Precision FP support for efficient DL workload specific operations
● Fuse Integer Pipeline within Floating-Point Datapath maximizing resource

reuse with minimal overhead
● Primary Goal? Meet 300MHz operational freq timing req
● Open-Source Baseline: BSG modified SystemVerilog Berkeley HardFloat

(RocketChip, Gemmini, Virgo, BSG Manycore)

FEDP MICROARCHITECTURE: LIBRARY MODULES

● Floating-point FEDP datapath requires several multi-operand additions:
○ Carry Save Adder (CSA) - (O(log2(N) + O(W))

● Fast final 2-operand adder:
○ Kogge-Stone Adder (KSA) - Parallel prefix tree structure

● Fast NxN-bit multiplier:
○ Wallace Tree Multiplier (WTMUL) - Fast partial product reduction

● Additional details in Backup Slides

FEDP Microarchitecture: Shared Low-Precision Multiplication

● Dedicated Wallace Tree multipliers approach requires:
○ One 11x11 (fp16), One 8x8 (bf16) Two 8x8(int8), Six 4x4 (fp8, uint4) and Two 3x3 (bf8)
○ → Thirteen variable-width multipliers

● Instead we share “class-wise” multipliers to save area based on format,
○ One 11x11 (fp16/bf16) – (extensible: tf32)
○ Two 8x8 (fp8/bf8/int8) – (extensible: uint8)
○ Four 4x4 (uint4) – (extensible: int4, fp4)
○ → Only seven variable-width multipliers

● Overhead incurred by radix-4 booth recoding
isn’t worth it at our target bit-widths (4-11)
although no. of partial products are halved

FEDP Microarchitecture: Shared Low-Precision Multiplication
● Formats that pack > 2 operands per register need additional additions to

maintain the same width and format compatibility later in the pipeline

● All multiplications converge in an E8M25 intermediate representation for
following stages in pipeline

FEDP Microarchitecture: Exponent Add & Bias

● Each FP format has a Exponent bias based on Exponent Bit-Width

● For eg,

○ FP32 Exp → 8-bits → Bias = (2^(8-1) -1) = 127

○ FP16 Exp → 5-bits → Bias = (2^(5-1) -1) = 15

● FP Multiplication result calculation requires input exponents addition

● Mixed-Precision operation requires bias adjustment

FEDP Microarchitecture: Maximum Exponent Identification

● Compute all N×N pairwise exponent sign and difference matrices
O(1) depth vs O(log2(N)) tree-comparator structure.

https://ieeexplore.ieee.org/document/7416176

● Don’t need to re-calculate shift amounts, simply invert subtractor results in
consideration

V2 > v1 > v3 > v4

FEDP Microarchitecture: Significand Alignment

● E8M25 raw significands require shifting before accumulation

● Shift amounts were already calculated in the

previous stage’s maximum exponent logic

FEDP Microarchitecture: High-Precision Accumulation

● N-operand (25+log2(N))-bit CSA accumulates aligned significand products
● Dealing with signed-values requires an additional log2(N) bit sign-extension before

feeding into CSA
● Addend “C” accumulation is integrated into this large accumulation → smaller

rounding error/critical path

https://ieeexplore.ieee.org/document/10182007

The CSA utilizes a recursive 4:2
compressor structure with 3:2 fallback to
deal with odd number of operands cases

FEDP Microarchitecture: Rounding & Normalization

● Standard Leading Zero Counter (LZC) normalization and

Round-to-nearest-even (RNE) rounding are performed.

round_up = guard_bit & (round_bit | sticky_bit | lsb)

FEDP Microarchitecture: Fusing the Integer Pipeline

● Many components required for Integer dot product operations are already found in the
existing FP datapath → Fusing both pipelines eliminates arbiter overhead and
separate scheduling units

● Products zero/sign-extended to 25-bits to match accumulator requirements and
enable reuse of intermediate registers

● 32-bit addend C is partitioned into
lower 25 bits (processed in FP
accumulation) and upper 7 bits
(propagated separately)

● Final 32-bit integer output is
assembled by concatenating 25-bit
accumulation with upper 7 bits
computed (CSA) in parallel to FP
normalization/rounding stage

FEDP Microarchitecture: Putting everything together

FEDP MICROARCHITECTURE: EVALUATION ENVIRONMENT

● RTL implementations of these modules can be found at

https://github.com/vortexgpgpu/vortex/tree/bug_fixes/hw/rtl/tcu/drl

● Library modules can be found at

https://github.com/vortexgpgpu/vortex/tree/bug_fixes/hw/rtl/libs

● Bash commands for running tests can be found at

https://github.com/vortexgpgpu/vortex/tree/bug_fixes/ci/regression.sh.in

The following evaluations of our FEDP design are made against equivalent

Berkeley HardFloat and Xilinx DSP IP based discrete implementations,

targeting 300MHz clock frequency on the AMD Xilinx Alveo U55C FPGA across

a range of Threads/Warp Configurations (4, 8, 16, 32)

https://github.com/vortexgpgpu/vortex/tree/bug_fixes/hw/rtl/tcu/drl
https://github.com/vortexgpgpu/vortex/tree/bug_fixes/hw/rtl/libs

FEDP Microarchitecture: Performance Scaling

Proposed FEDP Throughput = (2.453–30.662) GFLOPS!

~ 3.7x Berkeley HardFloat

FEDP Microarchitecture: Area Costs

Proposed <60% Berkeley HardFloat

SGEMM TCU DEMO

FUTURE WORK IN PROGRESS/CONSIDERATION

● Split 4:2 CSA structure into parallel MOD-4 groups for reducing large Ns
○ Eg. 8 thread config → needs 9 operands to be summed

● No difference in latency of dense vs sparse FEDP, but power consumption can be
optimized by enable gating modules/clock gating intermediate registers

● Add E8M0 registers for per-operand scaling, and some additional scaling multipliers
for OCP Microscaling MXFP8 formats dot product support

BACKUP/ADDITIONAL SLIDES

Outer Product Matmul

Inner vs Outer Product

● An outer product based uarch would enable lesser MIO BW (only requires
reading each row/colum once)

● However it requires storing full tile size intermediate results before
accumulation → very expensive

● Adjacent Rows/Columns can be accessed relatively easily from shared
memory → inner product based uarch should have the same throughput

OCP Microscaling MX Format Support

● Only select Nvidia Blackwell and AMD CDNA4 archs support MX formats atm
● Since, we already have FP8 support, we only need to add E8M0 registers for

per-operand scaling, and some additional scaling multipliers

FEDP MICROARCHITECTURE LIBRARY MODULES

● Floating-point FEDP datapath requires several multi-operand additions:

○ Summing multiple partial products from multiplier AND array

○ Summing multiple exponents for result exponent add and bias

○ Summing multiple sub-product

● Assuming we have N operands of W bits each:

○ Traditional Reduction Tree Adders have (O(log2(N)) x O(W))

complexity

○ Carry Save Adders have approximately (O(log2(N) + O(W))
complexity

● Operands in a CSA reduce vertically in parallel without prior carry

dependencies and only require one complete W-bit addition at the end

FEDP Microarchitecture Library Modules: Carry Save Adder (CSA)

FEDP Microarchitecture Library Modules: Kogge-Stone Adder (KSA)

Gi=Ai & Bi

Pi = Ai ^ Bi

FEDP Microarchitecture Library Modules: Wallace-Tree Multiplier

● Wallace-Tree Multipliers reduce the multiple partial products from the

multipliers AND array effectively using a CSA

● Radix-4 booth recoding overhead outweighs the benefit of halving the

number of partial products at our target 4-11 bit widths.

Shared Multiplier from Efficient FMA

● Unified mini-multiplier partial product grid for mantissa multiplication. Activate
partial products as required based on format

https://ieeexplore.ieee.org/document/8626475

KEY TAKEAWAYS FROM Efficient FMA

● Example executing fp32 24-bit mantissa multiplication using 15x15 bit multipliers
○ The four 15×15 multiplications produce:

■ pp0 = A_sub0 × B_sub0 (positions 0-29)
■ pp1 = A_sub0 × B_sub1 (positions 15-44)
■ pp2 = A_sub1 × B_sub0 (positions 15-44)
■ pp3 = A_sub1 × B_sub1 (positions 30-59)

○ Accumulate PPs using 4:2 CSA
● Advantages to this approach:

○ One large multiplier for all formats
○ Efficient resource utilization
○ Regularity in design → better synthesis
○ Parallel LZ(A)C subnormal to normal number during format transition

https://ieeexplore.ieee.org/document/8626475

KEY TAKEAWAYS FROM Efficient FMA

● Drawbacks to this approach:
○ A lot of subword boundary management

■ Sign Extension: Extending sum vectors with 1's to the MSB position of
the larger product (like in VX_tcu_drl_acc currently)

■ Carry Suppression: Discarding any carry propagation through bit
positions at mid-point zero-padded junctions (Eg. [59:48] position wrt
48-bit fp32 significand mul)

○ Still requires zero-padding for smaller formats
■ Alternatively, if a smaller bit size multiplier is chosen to avoid

zero-padding, a larger dimension partial product grid is required and
larger supported formats will require a lot of csa accumulation stages

https://ieeexplore.ieee.org/document/8626475

